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Abstract--An analytical study on the limit conditions of  steady-state countercurrent annular flow in a 
vertical tube has been performed, aiming at the prediction of  the onset o f  flooding in tubes where it is 
difficult for unstable wave motion to occur. A new expedient method is developed to determine the limit 
conditions under the involved flow conditions. It is revealed that the limit conditions in this flow system 
appear only when the interfacial shear stress increases with the liquid film thickness. A prediction model 
that takes the full effects of  the void fraction E into account, and a simplified model that considers only 
the effect o f  the liquid film thickness on the interfacial shear stress under a fixed condition of  E = 1 are 
dealt with, showing that they predict the experimental data fairly well at low liquid flow rates, and that 
the latter model performs better than the former one. Finally, there is a brief discussion as to the possibility 
of  the application of  the present analysis to the prediction of  the critical heat flux of  boiling in a 
bottom-closed vertical tube. 
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1. I N T R O D U C T I O N  

A large number of studies on flooding have been performed to date; and Imura et al. (1977), Tien 
& Liu (1979), McQuillan & Whalley (1985), Bankoff & Lee (1986) and others have surveyed the 
studied and data correlations. The majority of the studies assume that flooding is caused by some 
kind of wave motion or instability which occurrs on the gas/liquid interface, together with the 
entrainment of liquid droplets. 

There are, however, a small number of models, such as those employed by Wallis (1969, p. 343), 
Bharathan et al. (1979), Bharathan & Wallis (1983) and Lee & Bankoff (1983), which consider the 
limit for the existence of the steady-state countercurrent two-phase flow as the condition to initiate 
flooding. Namely, if there is an equation governing the above-mentioned two-phase flow-- 
F ( j c , J L ,  E)= 0, where j* and j* are the Wallis dimensionless superficial velocities of the gas and 
liquid phase and E is the void fraction--it gives flow curves of constant void fraction, such as those 
represented in figure 1, where the dimensionless liquid film thickness 6/R, R is the tube radius, is 
used in place of the void fraction E for convenience. Then, an envelope generated by these curves 
can be determined mathematically by solving the following simultaneous equations with two 
unknowns j*  and j*:  

.. .. dF 
F(jc,JL, E) = 0 G(j~,j~', E) = ~-  = O, [I] 

where the second equation is the derivative of the first equation with respect to e. In deriving the 
first equation of [1], Wallis (1969, p. 343) employed a drift-flux model, while the other two studies, 
Bharathan et al. (1979) and Lee & Bankoff (1983), assumed separated-flow models with friction 
at the gas/liquid interface. (Note: Richter (1981), Taitel et al. (1982) and Maron & Dukler (1984) 
also reported analyses based on the liquid film flow, but their criterion for the onset of flooding 
are different from the concept of the envelope given by [1]). 
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Figure 1. An envelope generated with flow curves of constant 6/R (air-water, 101.3 kPa, 20°C, 

D = 20 mm). 

Meanwhile, Dobran (1985) and Reed & Tien (1987) performed analytical studies relating to the 
transient characteristics of two-phase closed thermosyphons. They employed lumped models based 
on equations of continuity, momentum and energy with interfacial friction between the two 
phases. A common liquid film thickness was assumed by Dobran (1985) throughout the three 
sections of the condenser, adiabatic and evaporator, while Reed & Tien (1987) assumed 
an individual mean liquid film thickness at each of  the three sections. Then, Katto & Watanabe 
(1992) and Katto (1992) analyzed the limit conditions of  steady-state countercurrent annular 
flow with interfacial friction, assuming a continuous change in the liquid film thickness 
along the tube wall. Their studies relate to the critical heat flux (CHF) of boiling in a vertical 
tube and an annulus with a saturated-liquid plenum at the top and a closed bottom end. 

In conventional experiments of flooding, liquid is supplied to a vertical tube from the top and 
gas is supplied from the bottom end. In other words, each phase holds a constant mass flow 
rate throughout the tube and, hence, generally flooding can take place depending on the critical 
conditions which may appear at various parts of the tube. However, if one considers 
experiments such as those with a vertical tube with a special structure to avoid the interaction 
between the gas and liquid flow at the bottom end, the cause of  flooding may be simplified. 
Similarly, in the case of saturated boiling in a bottom-closed vertical tube, boiling liquid generates 
vapor flow, and hence the mass flow rates of the liquid and vapor are equal at any cross section, 
taking the highest value at the top end. In other words, the limit condition of  such a boiling system 
is localized at the top end of the tube, and hence the influence of other parts of the tube may be 
diminished. 

Consequently, there is a possibility that an analysis of flooding based on the concept of  the limit 
of steady-state countercurrent annular flow is particularly useful for such special flow systems. A 
study is made in this paper to consolidate the basis of  the above-mentioned limit analysis, including 
the development of a new method which avoids the difficulty created by the use of  the second of  
equations [1] under complicated conditions. 
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2. G O V E R N I N G  E Q U A T I O N S  AND C A L C U L A T I O N  P R O C E D U R E  

For a countercurrent two-phase flow in a vertical tube, the governing equations are derived on 
the basis of  a separated-flow model consisting of  an upward core gas flow and a downward liquid 
film flow along the tube wall. In addition, it is assumed for the sake of  simplicity that the individual 
states of  the liquid and gas flow can be determined by their respective Reynolds numbers, and that 
the friction and pressure of  the core gas flow are transmitted to the liquid film flow through the 
interface on the premise that the liquid film flow is comparatively thin. 

2,1. The case o f  laminar liquid f i lm f low 

For laminar liquid film flow along the tube wall, the following equation of  motion holds: 

0 I/ Ou\  

where/~L is the dynamic viscosity of the liquid, r is the radial coordinate, u is the downward velocity 
and ( appears as 

dp dp 2~i 
= PLg -- -~X and dx  - R - 6 + pGg" 

In the first of  the above two expressions, PL, g and d p / d x  are the liquid density, the gravitational 
acceleration and the pressure gradient (x is the the downard coordinate), respectively. The 
right-hand expression is an equation derived from the force balance of  the core gas flow, where 
xi is the shear stress on the interface, R is the tube radius, 6 is the liquid film thickness and PG is 
the gas density. Combining these two expressions gives 

i' ,3, = PLg 1 -- PL pLgR 1 -- " 

NOW, integrating [2], and considering I~L(t~u/Or) ---- "gi at r = R - 6 and u = 0 at r = R, gives the 
velocity distribution u(r). With this u(r), the mass flow rate of the liquid film per unit tube 
perimeter F can be evaluated by 

2 g R F  = 2gpL ru dr, [4] 

1 6 ( 2 - ~ ) I 2 - 6 6 - - + 3 ( ~ ) 2 1  
16R R 

R 

Expanding both sides of  [5] with respect to 6 /R  and neglecting terms smaller than (6 /R )  ~, leads 
to the following relationship: 

~__=pL(~2---'----~-q-2---~ 1 4 6 1(~'~21 

R 6 3 

where ~ is given by [3]. In this paper, the analysis will be limited to within the range of  6 / R  < 0.25 
(or more strictly, 6 / R  < 0.15). 

2.2. The case o f  turbulent f i lm f low 

For turbulent liquid film flow, a similar analysis to the preceding section is possible by assuming 
the Karman velocity distribution, for example. However, the accuracy of  this method is not so good 

leading to the result: 

1 1 -  In 6 
4 1 - -  
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when applied to a liquid film flow and, besides, it requires three complicated formulas. Hence, a 
simple method is adopted here; i.e. if the shear stress caused by the tube wall on the liquid flow 
is denoted by ~w, the following expression generally holds from the force balance of the liquid film 
flow: 

6 zw + 1 - zi 
- -  = [ 7 ]  

where z~, is evaluated by the equation of Wallis (1969, p. 329) for turbulent liquid film flow, 

1 2 
Z w ----- i P L  U L Cfw [8 ]  

where 

is the wall friction coefficient and ReLF is the film Reynolds number. As for ( on the right-hand 
side of [7], it can be evaluated by [3], because [3] holds universally and is independent of the flow 
state. 

2.3. Reynolds number of the core gas and the liquid film flow 
When the mass flow rates of the gas and liquid are mc and mL, respectively, the mean velocity 

of the core gas flow u~ (positive in the upward direction) and that of the liquid film flow UL (positive 
in the downward direction) are 

mG mG 

uG PGrc(R --6)2-- 1 -- 

m L  m L  
~ o 

and 

[ lO] 

Then, the relatively velocity u' between the gas and the liquid and the core gas Reynolds number 
Re~ are defined, respectively, as follows: 

U t ~ Ug "]- U L 

and 
u'(2R - 26) 

Re~ = 
YG 

[ll] 

u ' 2 R (  l v G  - ~ ) '  [12] 

where v~ is the kinematic viscosity of the gas. The mass flow rate of the liquid film per unit tube 
perimeter F and the film Reynolds number ReLF are written, respectively, as follows: 

and 

_ m L  [ 1 3 ]  r 2nR 

4F 
ReEF = - - .  [14] 

/ZL 

2.4. Evaluation of z~ in [31, [6] and [7] 

The shear stress at the interface zi is evaluated by 

t i  = ½p~(u'yC., [ IS]  

where u" is the relative velocity between the liquid velocity at the interface and the mean velocity 
of the core gas flow and Ca is the inteffacial friction coefficient. 

The definition of u' is somewhat different between [11] and [15]. However, the magnitude of the 
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interfacial liquid velocity uu is of  the same order as UL within the conditions of  the present study, 
while UL is extremely low compared with u6. Consequently, [ u u -  UL[ '~ U~ and, hence, u' of  [1 l] 
can be used for u' in [15] without serious error. 

The interfacial friction coefficient Ca in [151 is evaluated by the following equations: 

for laminar core gas flow, 

and 

for turbulent core gas flow, 

16 
C~ = Re~ '  [161 

[<$ "X x2 
C, = 0.005 + x i[ -R)  . [171 

x~ and x2 are functions of the Bond number Bo = (4pLgR2/a) 1/2 only, as 

xi = 0 2574 . ( ) 10 9'07/B° 
x 2 

and 
4.74 

x2 = 1.63 -F - -  
Bo 

Equation [17] is an empirical correlation obtained by Bharathan et al. (1979) following the 
interfacial-roughness concept for the pressure drop in annular flow originated by Wallis (1970); and 
[17] has recently been used widely by Bharathan & Wallis (1983), Lee & Bankoff 0983), Dobran 
0985), Reed & Tien (1987) and Katto & Watanabe (1992). 

Next, if the core gas flow is in the transition region, the magnitude of  Ca is calculated by the 
following relationships, based on a two-step linear approximation of  Ca in the transition region 
(Katto & Watanabe 1992): 

for 2900 < Re'o < 11,000, 

and 

for I1,000 < Reb < 20,000, 

Ca - CaEla] Re~ - 2900 
0.8Ca[171 - Ca[~6l 11,000 - 2900' 

Ca - 0.8Cfitl7] = Re~ - 11,000 [18] 
Cfi[17 ] - -  0 .8Cf i [17  ] 20 ,000-  11,000" 

Where C¢6j is the value of  Ca of  [16] at Re~ = 2900 and Carl7] is the value of  Ca of  [17], i.e. 
independent of  Re~. 

2.5. Calculation procedure 

Equation [6] or [7] can be expressed in a unified form as 

Y, = Y2, [191 

where I11 = 6/R, while Y2 designates the right-hand side of  [61 or that of  [7] depending on the state 
of  the liquid film flow (see table 1). Then, if values of J c, J L and 6/R (= Y~ ) are assumed, Re6 and 
ReLF can be evaluated by [12] and [141, respectively. Through these Reynolds numbers, the flow 
states of  the gas and liquid phase are known, and then I"2 of  [19] can be computed by employing 
the right-hand side of  [61 or [71, where Ti is evaluated by [15]. Finally, if the magnitude of  I"2 thus 
calculated satisfies [19], then the initially assumed values of  j * ,  j*  and ~/R are the flow situation 
satisfying [19]. 

In table 1, part (A) represents the foregoing calculation procedure systematically, where the states 
of  the gas and liquid flow are subdivided into three characteristic regions. When the liquid film 
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Table I(A, B). Equations used to compute Y2 of [19] for given values ofj~, j~* and ~5/R (= YI) 
(A) The t Model 

State of core gas flow Laminar Transition Turbulent 
Re~: [9]-[12] (Re~ < 2900) (2900 < Re~ < 20,000) (20,000 < Re~) 

Evaluation of zi ri: [15] zi: [15] zi: [15] 
where Ca: [16] where Cfi: [18] where C~: [17] 

State of liquid film f low Laminar Transition Turbulent 
ReLF: [13, 14] (ReLF < 2040) (2040 < ReLF < 3500) (3500 < ReLF ) 

Computation of Y2 Y2: RHS of [6] Y2: [20] 112: RHS of [7] 
where (: [3] where Y2,tam: RHS of [6] where (: [3] 

Y2aur: RHS of [7] %: [8] 
(B) The Non-e Model 

State of core gas flow Laminar Transition Turbulent 
Re~: [22, 11] (Re~ < 2900) (2900 < Re~ < 20,000) (20,000 < Re~) 

Evaluation of Ti zi: [15] zi: [15] zi: [15] 
where Q: [16] where Ca: [18] where Ca: [17] 

State of liquid film f low Laminar Transition Turbulent 
ReEl:: [13, 14] (ReLF < 2040) (2040 < ReEF < 3500) (3500 < ReLF ) 
Computation of Y: Y2: RHS of [21] Yz : [l 9] Y2: RHS of [22] 

where Y2,1a~,: RHS of [21] where %: [8] 
Y2,tur: RHS of [22] 

flow is in the transition region, the evaluation of  % included in [7] is complicated. Hence, based 
on the idea of  Reed & Tien (1987), Y2 is evaluated by 

Y2 = Y2.1am " (3500 -- ReLF) + Y2,tur " (ReLF -- 2040), [20] 
3500 -- 2040 

where Y2.~m and Y2.tur are the values of  Y2 evaluated by assuming laminar and turbulent liquid film 
flow at the present ReLF, respectively. 

3. L IMIT  OF THE POSSIBLE O P E R A T I N G  C O N D I T I O N S  

3.1. Method to determine the limit conditions 

It is clear from section 2.5 that [19] is an equation which is equivalent to the first equation of 
[1]. A standard method of  obtaining the envelope of [1] is to solve the simultaneous equations [1] 
with two unknowns (e.g. Lee & Bankoff 1983). However, this is not necessarily an appropriate 
method under the involved conditions of  two-phase flow, such as those in the present study, because 
of the difficulty of preparing the second equation of  [1] and because of  the difficulty of grasping 
the physical meaning. In the present study, therefore, a new method is developed to determine the 
envelope by pursuing the limit boundary for the existence of  real roots of  the first equation of  [1] 
only. 

As has been mentioned in section 2.5, if values of j * ,  j*  and 6/R (=  Yt) are assumed, the 
mangitude of Y~ can be calculated; and figure 2 is a typical diagram resulting from such 
calculations. It is found in figure 2 that each intersection point between the YI- and Y2-1ines 
designates a set of real roots (JG,JL and 6/R) satisfying [19], and that if the gas flow rate is increased 
beyond x / ~  = 0.490, no real roots can appear. In other words, the contact point between the YI- 
and 1"2-lines at x / ~  = 0.490 is the limit condition of  the possible gas flow rate under the present 
conditions of  D = 50 mm and x / ~  = 0.5. 

Figure 3 is a diagram showing a process to determine the contact point, in such situations, by 
computer. First, under a fixed condition of  X//~L * , a sequential computation of  Y2 starts from certain 
small values of j*  and 6/R (point A). During the initial stage where the value of  Y2 is lower than 
that of Y~ (= 6/R), the magnitude of j~  is increased in a stepwise manner so as to move the Y~-point 
(represented by 0 )  successively in the direction of  B until the Y2-point exceeds the 111-line. 

The computation now enters the second stage, where the magnitude of  Y2 is calculated, increasing 
6/R in a stepwise manner under a fixed condition of  j * ,  when the Y:-point moves successively along 
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Figure 2, Variations of Y, and ~ with liquid film thiekne~ 6/R ~ir-water, 101.3 kPa, 20°C). 

a curved line (like the C-line, for example). Moving along such a line, the Yl-point soon goes down 
below the Y,-line; the same computation procedure as above is repeated by increasing the fixed 
value ofj~ little-by-little until the final situation of the D-line is reached. During the computation, 
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Figure 3. Method to determine the contact point between the Y,- and Yl-iines. 
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this final situation can be readily detected by the appearance of a state wherein the Y:-point is 
above the Y~-line and the gradient between the adjacent two Y2-points exceeds 45 °. Then, if the 
increment of j*  between the C- and D-lines is sufficiently small, the limit condition can be 
determined accurately by averaging the respective states at the right ends of the C- and D-lines. 
The envelope in figure 1 is an example obtained by such a procedure. 

3.2. Generation of the limit conditions 
The concept of the envelope of [1], or that of figure 1, is liable to give the impression that the 

limit condition is generated through the variation of flow situations corresponding to the change 
in the respective cross-sectional areas of the two-phase flow or the change in the void fraction E 
(or 6/R). In fact, according to the author's previous study (Katto 1992), it is probable that this 
situation actually appears in a very special case of vertical annuli with extremely thin clearances. 

In the present flow, however, the change in the void fraction c (or 6/R) can affect not only the 
cross-sectional areas but also the interfacial shear stress when the core gas flow is in the turbulent 
or transition region (see [17]). Therefore, there is an interesting problem as to which of the two 
effects mentioned above is more important for the generation of the limit conditions. 

It is obvious from figure 2 that the limit conditions appear only when the Y2--f/R curve is 
downwardly convex. Y2, which represents the right-hand side of [6] or [7], can be divided into two 
parts: the first term relating to factors of the liquid film flow such as F or Tw; and the second term 
relating to the interfacial shear stress ri. Figure 4 presents the values of the first and second terms 
of Y2 vs 6/R, under the same conditions as those of figure 2, and shows that the first term decreases 
monotonously with increasing 6/R, while the second term increases very rapidly with 6/R when 
the gas flow rate is sufficiently high. (Note: the mangitude of Reb ranges from 9700 to 17,400 for 
the line of x / ~  = 0.321, for example.) It is then readily proved that this special character of the 
second term of Y2 is caused by the second term on the right-hand side of the C~ correlation [17], 
and that its effect on '~i is rapidly accelerated by the increase in the gas flow rate: (u') 2 (see [15]). 

Accordingly, it can be concluded that the limit conditions in the present model are generated 
through the characteristics of the interfacial shear stress Ti, which increases with the liquid film 
thickness 6/R. In connection with this problem, it may be of interest to note that the Cn correlation 
of type [17] has played an important role in almost all the theoretical studies on the limit conditions 
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of countercurrent annular flow (Bharathan et al. 1979; Bharathan & Wallis 1983; Lee & Bankoff 
1983; Dobran 1985; Reed & Tien 1987; Katto & Watanabe 1992). 

3.3. The E and non-E models 

The results of the preceding section suggests the possibility that, even if ~/R and ( 6 / R )  2 
are negligible compared with unity on the right-hand sides of [6] and [7] (which is equivalent 
to E = 1 except for the effect of 6/R on zi), the limit conditions still appear. In addition, the 
dashed lines in figures 5 and 6 shows that the magnitudes of 6/R and 2Ti/(pLgR) at the limit 
conditions are considerably small compared with unity, particularly in the region of small 
magnitude of j* .  

Accordingly, let us assume 6/R ,~ 1 and 2zi/(pLgR) ,~ 1 in [6] and [7] together with an ordinary 
condition of PG/PL'~ 1, and the above two equations reduce to the following equations, 
respectively: 

and 

6 3 F p L  3 z i 

p~,g6=R q 2 pLgR [21] 

(~ Tw -J- "~i 
- -  = . [ 2 2 ]  
R Rpgg 

In addition, [9], [10] and [12] also reduce to 

?riG ~v/L 
IlG pofrR 2 , II L = pL 27tR 6 and Re~ = u'2RvG ' [23] 
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respectively. The above-mentioned [21]-[23] are the same equations as employed in a previous study 
(Katto & Watanabe 1992) analyzing the CHF of boiling in a bottom-closed vertical tube. 

Let us designate the limit condition model based on [6] and [7] as the E model, and that based 
on [21]-[23] as the non-E model. The calculation procedure of Y~ in the case of the non-E model 
is listed in part (B) of table 1. Figure 7 presents the limit conditions predicted by the 
above-mentioned two models for the onset of flooding of an air-water system (101.3 kPa, 20°C). 
Figure 8 presents the Reynolds numbers of the gas and liquid flow at the limit conditions of figure 
7, respectively. In figure 8, the relationship between ReLy and ~L* is presented by the solid lines 
only, because [13] and [14] are commonly used to evaluate ReLF for the two models. Meanwhile, 
figure 5 presents the magnitude of the dimensionless liquid film thickness 6/R at the limit conditions 
of figure 7. It is noticed from these figures that the difference between the two models is not so 
great particularly in the region of, say, ~ < 0.4. 

4. COMPARISON WITH THE EXPERIMENTAL DATA FOR THE ONSET OF 
FLOODING 

As has already been mentioned, flooding is a phenomenon with many complicated aspects. In 
addition to this, accurate detection of the onset of flooding is rather difficult, because of the abrupt 
change in the flow configurations near the onset of flooding. In fact, experimental results of flooding 
tend to differ according to the method of detection. 

The limit conditions dealt with so far in this paper are those of steady-state countercurrent 
annular flow. Therefore, it is advisable to compare the prediction of the present analysis with the 
experimental data obtained for the onset of flooding in flow systems which are free, as far as 
possible, from unstable wave motion, such as a vertical tube with constructions to prevent the 
interaction between the downward flow of liquid and the converging flow of gas from the 
surrounding space near the bottom end of the tube. 

The limit conditions predicted by the c and non-~ models are then compared with the experiment 
data of Suzuki & Ueda (1977), in figure 9, and of Celata et al. (1991), in figure 10. In these 
experiments, a downwardly divergent duct was attached to the bottom end of the tube. A trend 
is noticed in these figures that the predictions agree with the data comparatively well in the region 
of, say, ~ < 0.4, but the situation becomes rapidly worse if ~ is increased further. Perhaps, 
such an end structure as mentioned above may be insufficient to prevent the interaction of the two 
fluids at very high liquid flow rates. 

In addition, figures 9 and 10 (together with other similar comparisons omitted here due to limited 
space) suggest a trend that the non-~ model performs better than the E model regarding 
correspondence with the data. This is a strange result, but it may derive from the approximations 
in parts of the present analysis: wherein the independence of each phase is assumed according to 
the determination of the flow state by the Reynolds number; and the interaction between the two 
phases is 'hidden' in the assumption of the interfacial shear stress based on the interfacial-roughness 
(i.e. irregular deformation of the interface). 

Figure 11 shows comparisons of the non-c model prediction with the experimental data of Tien 
et al. (1989) for four different tube diameters. In this case, the predictions shows a rough trend 
to agree with the data points up to ~ = 1, probably because of their experimental conditions 
that air is supplied to the test tube through a concentric tube of diameter smaller than that of the 
test tube to avoid the positive interaction of the liquid flow. 

On the other hand, the data in figure 12 is that obtained by Tien et al. (1989) for sharp-ended 
tubes and, accordingly, it is a natural consequence that a noticeable deviation from the prediction 
is observed. 

Finally, figure 13 presents the data obtained by Bharathan et al. (1979) for tubes rounded at both 
the top and bottom ends with radii greater than the tube diameter. In this case, a noticeable trend 
is that the data points appear with a linear relationship between ~ / ~  and ~ t *  such as that of the 
well-known Wallis' correlation (Wallis 1961). However, good agreement is observed between 
the predicted and experimental results at very low values of ~ .  Perhaps, the interaction between 

MF 20/I--E 
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two phases may be avoided at the bottom end for this kind of tube only when the liquid film flow 
rate is extremely low. 

5. C O M P A R I S O N  W I T H  D A T A  F O R  T H E  C H F  O F  B O I L I N G  IN  
B O T T O M - C L O S E D  T U B E S  

Detailed analysis of the CHF of boiling in bottom-closed vertical tubes is not the object of the 
present study, so figure 14 alone is shown here for reference. In this figure, the lines descending 
to the right represent the flooding curves predicted by the non-E model for water, R- 113 and R-22, 
under the conditions of diameter D and pressure Pl, P2 and P3 listed outside the figure. The straight 
lines passing through the origin represent the following relationship: 

47 

which is derived from the mass balance of mo=  mL that holds in the present boiling system. 
Therefore, the limit conditions of stable boiling should appear at the intersection points of the 

above-mentioned two lines obtained for each identical experimental condition; and it is of interest 
to note that these intersection points agree fairly well with the experimental CHF data [the data 
obtained by Katto & Hirao (1991) and Katto & Watanabe (1992) and unpublished data for R-113 
and R-22 by Katto et al.]. Finally, figure 14 shows an important fact: in the CHF case the 
magnitude of x / ~  does not exceed 0.3, even for the R-22 experiments with every high vapor/liquid 
density ratios up to Po/PL = 0.136 (at P3 = 2808 kPa). 
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Figure 14. Comparison with CHF data of water, R-113 and R-22 boiling in bottom-closed vertical tubes. 
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6. CONCLUSIONS 

(1) A study has been performed on the analysis of the limit conditions for steady-state 
countercurrent annular flow, developing a new method to determine the limit conditions by 
discriminating between the real and imaginary region as to the root of the flow equation [19]. 

(2) In the above-mentioned flow, the limit conditions appear only when the interfacial friction 
increases with the liquid film thickness. The change in the cross-sectional areas of the gas and 
liquid flow, due to the variation in the void fraction e (or the dimensionless liquid film thickness 
6/R), is not the main cause of the limit conditions. 

(3) Two distinctive models, i.e. an E model (which considers the full effects of the variation of the 
void fraction E) and a non-E model (which does not consider the effects ore except for the effect 
on the interfacial friction) are dealt with. These two models do not differ very much with respect 
to the prediction of the limit conditions. 

(4) However, when compared with the experimental data obtained for a vertical tube with a 
construction to prevent the interaction between the gas and liquid flow at the bottom end, it 
is found that the non-e model performs better than the E model with regard to the agreement 
with the experimental data. Roughly speaking, it is likely that the non-E model applies fairly 
well to the prediction of flooding in the range of x / ~  = 0 to 0.4. 

(5) In the case of the CHF of saturated boiling in a bottom-closed vertical tube, the limit conditions 
appear under rather simple situations compared with flooding, and x / ~  does not exceed 0.3; 
accordingly, the non-E model may probably be useful to predict the CHF. 
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